Fraises carbure monobloc EPM

L'entrée de gamme performante pour les fraises carbure monobloc

EPM série

L'entrée de gamme performante pour les fraises carbure monobloc

Le concept EPM

- Une gamme centrée sur les principales applications.
- Une gamme universelle pour des matières spécifiques.
- Un rapport performance/prix attractif pour l'entrée de gamme des fraises carbure monobloc.

Les caractéristiques EPM

- Un substrat carbure nano revêtu TiAIN pour le fraisage des aciers (55HRC), des aciers inoxydables et des fontes. Résistance à l'usure et ténacité optimisées pour un large spectre d'applications.
- Une qualité d'arête stable
- Fraises à dresser et fraises boule
- Diamètre 3.0–20.0mm

Les avantages EPM

- Sélection du produit facilitée pour une large gamme d'applications
- Résultats constants grâce à une qualité d'arête précise
- Rapport performance/prix optimal

P - D12 R0.5 - M08 -EPM - 2 Ε

8

	Application
Code	Description
GR	Usinage d'ébauche général
GM	Semi-finition
GF	Finition
PM	Usinage haute performance
EPM	«Ecoline» – Usinage haute performance
НМ	Usinage de matériaux durs
НН	Usinage haute vitesse de matériaux durs
NM	Semi-finition de métaux non ferreux
AL	Usinage général de l'aluminium et des alliages d'aluminium
ALP	Usinage haute performance de l'aluminium et des alliages d'aluminium
ALG	Usinage général de l'aluminium et des alliages d'aluminium
UM	Usinage HSC/HPC
VSM	Usinage général de matériaux difficiles à usiner

1

Nombre d'arêtes

2

	Version d'arête							
Code	Description							
E	Fraises à 90° avec chanfrein de protection							
F	Fraise de contournage avec arête de coupe vive							
В	Fraise hémisphérique							
R	Fraise torique							
w	Fraise d'ébauche							
Н	Fraise grande avance							

3

Longueur d'arête							
Code	Description						
L	Long						
Χ	Extra long						
F	Court						

	Тур
Code	Description
S	Diamètre mini
P	Dégagement cylindrique
С	Dégagement conique

Diamètre [mm]							
Code Description							
D3.0	3,0						
D8.0	8,0						
D20.0	20,0						

	Rayon [mm]							
Code Description								
R0.5	0,5							
R1.0	1,5							
R3.0	3,0							
•••								

	Particularités							
Code	Code Description							
G	Angle d'hélice 30°							
М	Longueur de dégagement							
S	Attachement étroit							
AIR	Pour l'industrie aéronautique							

a Fraisage de poches

b Fraisage à 90°

c Fraisage de forme

d Rainurage

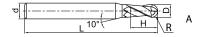
e Fraisage à surfacer

f Fraisage à chanfreiner

g Fraisage en plongée


h Fraisage circulaire/rampes

Fraise hémisphérique


Usinage haute performance

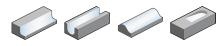
- Attachement cylindrique, standard usine ZCC-CT
- Coupe au centre
- Angle d'hélice 30°

			Dimensions [mm]						Nuance
Article	*	R	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-2B-R1.5		1.5	3	6	6	50	2	А	•
EPM-2B-R2.0		2	4	6	8	50	2	Α	•
EPM-2B-R2.5		2.5	5	6	10	50	2	Α	•
EPM-2B-R3.0		3	6	6	12	50	2	В	•
EPM-2B-R4.0		4	8	8	16	60	2	В	•
EPM-2B-R5.0		5	10	10	20	75	2	В	•
EPM-2B-R6.0		6	12	12	24	75	2	В	•
EPM-2B-R7.0		7	14	14	28	75	2	В	•
EPM-2B-R8.0		8	16	16	32	100	2	В	•
EPM-2B-R10.0		10	20	20	40	100	2	В	•

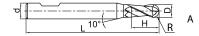
[•] En stock o Sur demande

^{*} Avec arrosage interne

Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н
V	~	>			~


✓ Très approprié

Fraise hémisphérique


Usinage haute performance

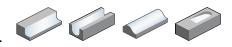
- $\ Attachement \ cylindrique, standard \ usine \ ZCC-CT$
- Coupe au centre
- Angle d'hélice 30°

						Nuance			
Article	*	R	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-2B-R1.5-W		1.5	3	6	4	50	2	А	•
EPM-2B-R2.0-W		2	4	6	5	54	2	Α	•
EPM-2B-R2.5-W		2.5	5	6	6	54	2	Α	•
EPM-2B-R3.0-W		3	6	6	7	54	2	В	•
EPM-2B-R4.0-W		4	8	8	9	58	2	В	•
EPM-2B-R5.0-W		5	10	10	11	66	2	В	•
EPM-2B-R6.0-W		6	12	12	12	73	2	В	•
EPM-2B-R8.0-W		8	16	16	16	83	2	В	•
EPM-2B-R10.0-W		10	20	20	20	92	2	В	•

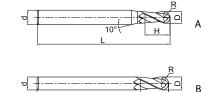
[●] En stock ○ Sur demande

^{*} Avec arrosage interne

Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н
~	>	~			~


✓ Très approprié

Fraise hémisphérique, attachement long


Usinage haute performance

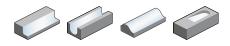
- Attachement cylindrique, standard usine ZCC-CT
- Coupe au centre
- Angle d'hélice 30°

						Nuance			
Article	*	R	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-2BL-R1.5	•	1.5	3	6	6	75	2	А	•
EPM-2BL-R2.0		2	4	6	8	75	2	Α	•
EPM-2BL-R2.5		2.5	5	6	10	75	2	Α	•
EPM-2BL-R3.0		3	6	6	12	75	2	В	•
EPM-2BL-R4.0		4	8	8	16	100	2	В	•
EPM-2BL-R5.0		5	10	10	20	100	2	В	•
EPM-2BL-R6.0		6	12	12	24	100	2	В	•
EPM-2BL-R7.0		7	14	14	28	100	2	В	•
EPM-2BL-R8.0		8	16	16	32	150	2	В	•
EPM-2BL-R10.0		10	20	20	40	150	2	В	•

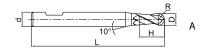
[●] En stock ○ Sur demande

^{*} Avec arrosage interne

Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н
V	~	>			~


✓ Très approprié

Fraise hémisphérique, attachement long


Usinage haute performance



- Attachement cylindrique, standard usine ZCC-CT
- Coupe au centre
- Angle d'hélice 30°

						Nuance			
Article	*	R	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-2BL-R1.5-W		1.5	3	6	4	57	2	А	•
EPM-2BL-R2.0-W		2	4	6	5	57	2	Α	•
EPM-2BL-R2.5-W		2.5	5	6	6	57	2	Α	•
EPM-2BL-R3.0-W		3	6	6	7	57	2	В	•
EPM-2BL-R4.0-W		4	8	8	9	63	2	В	•
EPM-2BL-R5.0-W		5	10	10	11	72	2	В	•
EPM-2BL-R6.0-W		6	12	12	12	83	2	В	•
EPM-2BL-R8.0-W		8	16	16	16	92	2	В	•
EPM-2BL-R10.0-W		10	20	20	20	104	2	В	•

[●] En stock ○ Sur demande

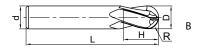
^{*} Avec arrosage interne


Don	naine d	'utilisa	tion		
P	М	K	N	S	Н
-	(>			_

✓ Très approprié

Fraise hémisphérique

Usinage haute performance



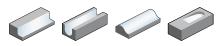
- Attachement cylindrique, standard usine ZCC-CT
- Coupe au centre
- Angle d'hélice 30°

				Dimensions [mm]				Nuance
Article	*	R	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-4B-R1.5	•	1.5	3	6	6	50	4	А	•
EPM-4B-R2.0		2	4	6	8	50	4	Α	•
EPM-4B-R2.5		2.5	5	6	10	50	4	Α	•
EPM-4B-R3.0		3	6	6	12	50	4	В	•
EPM-4B-R4.0		4	8	8	16	60	4	В	•
EPM-4B-R5.0		5	10	10	20	75	4	В	•
EPM-4B-R6.0		6	12	12	24	75	4	В	•
EPM-4B-R7.0		7	14	14	28	75	4	В	•
EPM-4B-R8.0		8	16	16	32	100	4	В	•
EPM-4B-R9.0		9	18	18	36	100	4	В	•
EPM-4B-R10.0		10	20	20	40	100	4	В	•

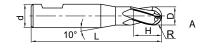
[●] En stock ○ Sur demande

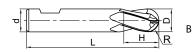
^{*} Avec arrosage interne

Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н
~	V	~			~


✓ Très approprié

Fraise hémisphérique


Usinage haute performance



- $\ Attachement \ cylindrique, standard \ usine \ ZCC-CT$
- Coupe au centre
- Angle d'hélice 30°

				Dimensions [mm]				Nuance
Article	*	R	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-4B-R1.5-W		1.5	3	6	4	50	4	Α	•
EPM-4B-R2.0-W		2	4	6	5	54	4	Α	•
EPM-4B-R2.5-W		2.5	5	6	6	54	4	Α	•
EPM-4B-R3.0-W		3	6	6	7	54	4	В	•
EPM-4B-R4.0-W		4	8	8	9	58	4	В	•
EPM-4B-R5.0-W		5	10	10	11	66	4	В	•
EPM-4B-R6.0-W		6	12	12	12	73	4	В	•
EPM-4B-R7.0-W		7	14	14	14	75	4	В	•
EPM-4B-R8.0-W		8	16	16	16	83	4	В	•
EPM-4B-R9.0-W		9	18	18	18	84	4	В	•
EPM-4B-R10.0-W		10	20	20	20	92	4	В	•

[●] En stock ○ Sur demande

^{*} Avec arrosage interne

Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н
~	~	>			>

✓ Très approprié

Fraise hémisphérique, attachement long


Usinage haute performance

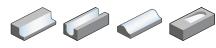
- Attachement cylindrique, standard usine ZCC-CT
- Coupe au centre
- Angle d'hélice 30°

				Dimensions [mm			Nuance		
Article	*	R	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-4BL-R1.5	•	1.5	3	6	6	75	4	А	•
EPM-4BL-R2.0		2	4	6	8	75	4	Α	•
EPM-4BL-R2.5		2.5	5	6	10	75	4	Α	•
EPM-4BL-R3.0		3	6	6	12	75	4	В	•
EPM-4BL-R4.0		4	8	8	16	100	4	В	•
EPM-4BL-R5.0		5	10	10	20	100	4	В	•
EPM-4BL-R6.0		6	12	12	24	100	4	В	•
EPM-4BL-R7.0		7	14	14	28	100	4	В	•
EPM-4BL-R8.0		8	16	16	32	150	4	В	•
EPM-4BL-R10.0		10	20	20	40	150	4	В	•

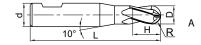
[•] En stock o Sur demande

^{*} Avec arrosage interne

Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н
~	V	V			~


✓ Très approprié

Fraise hémisphérique, attachement long


Usinage haute performance

- $\ Attachement \ cylindrique, standard \ usine \ ZCC-CT$
- Coupe au centre
- Angle d'hélice 30°

				Dimensions [mm]					Nuance
Article	*	R	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-4BL-R1.5-W		1.5	3	6	4	57	4	Α	•
EPM-4BL-R2.0-W		2	4	6	5	57	4	Α	•
EPM-4BL-R2.5-W		2.5	5	6	6	57	4	Α	•
EPM-4BL-R3.0-W		3	6	6	7	57	4	В	•
EPM-4BL-R4.0-W		4	8	8	9	63	4	В	•
EPM-4BL-R5.0-W		5	10	10	11	72	4	В	•
EPM-4BL-R6.0-W		6	12	12	12	83	4	В	•
EPM-4BL-R8.0-W		8	16	16	16	92	4	В	•
EPM-4BL-R10.0-W		10	20	20	20	104	4	В	•

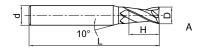
[●] En stock ○ Sur demande

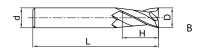
^{*} Avec arrosage interne

Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н

✓ Très approprié

Fraise carbure monobloc


Usinage haute performance



- Attachement cylindrique, standard usine ZCC-CT
- Coupe au centre
- Angle d'hélice 30°

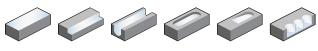
			Dimensio	ons [mm]				Nuance
Article	*	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-2E-D3.0		3	6	8	50	2	Α	•
EPM-2E-D4.0		4	6	11	50	2	Α	•
EPM-2E-D5.0		5	6	13	50	2	Α	•
EPM-2E-D6.0		6	6	16	50	2	В	•
EPM-2E-D8.0		8	8	20	60	2	В	•
EPM-2E-D10.0		10	10	25	75	2	В	•
EPM-2E-D12.0		12	12	30	75	2	В	•
EPM-2E-D14.0		14	14	32	75	2	В	•
EPM-2E-D16.0		16	16	45	100	2	В	•
EPM-2E-D18.0		18	18	45	100	2	В	•
EPM-2E-D20.0		20	20	45	100	2	В	•

[•] En stock o Sur demande

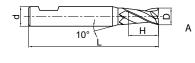
^{*} Avec arrosage interne

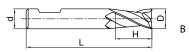
Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н

✓ Très approprié



Fraise carbure monobloc


Usinage haute performance



- $\ Attachement \ cylindrique, standard \ usine \ ZCC-CT$
- Coupe au centre
- Angle d'hélice 30°

			Dimensio	ns [mm]				Nuance
Article	*	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-2E-D3.0-W		3	6	4	50	2	A	•
EPM-2E-D4.0-W		4	6	5	54	2	Α	•
EPM-2E-D5.0-W		5	6	6	54	2	Α	•
EPM-2E-D6.0-W		6	6	7	54	2	В	•
EPM-2E-D8.0-W		8	8	9	58	2	В	•
EPM-2E-D10.0-W		10	10	11	66	2	В	•
EPM-2E-D12.0-W		12	12	12	73	2	В	•
EPM-2E-D14.0-W		14	14	14	75	2	В	•
EPM-2E-D16.0-W		16	16	16	82	2	В	•
EPM-2E-D18.0-W		18	18	18	84	2	В	•
EPM-2E-D20.0-W		20	20	20	92	2	В	•

[●] En stock ○ Sur demande

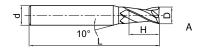
^{*} Avec arrosage interne

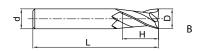
Don	naine d	tion			
Р	S	Н			
~	~	>			~

[✓] Très approprié

[✔] Approprié

Fraise à grande longueur taillée Usinage haute performance





- Attachement cylindrique, standard usine ZCC-CT
- Coupe au centre
- Angle d'hélice 30°

			Dimensio	ons [mm]				Nuance
Article	*	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-2EL-D3.0		3	6	12	75	2	Α	•
EPM-2EL-D4.0		4	6	15	75	2	Α	•
EPM-2EL-D5.0		5	6	20	75	2	Α	•
EPM-2EL-D6.0		6	6	20	75	2	В	•
EPM-2EL-D8.0		8	8	25	100	2	В	•
EPM-2EL-D10.0		10	10	30	100	2	В	•
EPM-2EL-D12.0		12	12	35	100	2	В	•
EPM-2EL-D14.0		14	14	40	100	2	В	•
EPM-2EL-D16.0		16	16	50	150	2	В	•
EPM-2EL-D20.0		20	20	55	150	2	В	•

[•] En stock o Sur demande

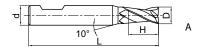
^{*} Avec arrosage interne

Don	naine d				
Р	М	K	N	S	Н
~	V	V			~

✓ Très approprié

Fraise à grande longueur taillée

Usinage haute performance





- $\ Attachement \ cylindrique, standard \ usine \ ZCC-CT$
- Coupe au centre
- Angle d'hélice 30°

			Dimensio	ons [mm]				Nuance
Article	*	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-2EL-D3.0-W	•	3	6	6	57	2	Α	•
EPM-2EL-D4.0-W		4	6	8	57	2	Α	•
EPM-2EL-D5.0-W		5	6	10	57	2	Α	•
EPM-2EL-D6.0-W		6	6	10	57	2	В	•
EPM-2EL-D8.0-W		8	8	16	63	2	В	•
EPM-2EL-D10.0-W		10	10	19	72	2	В	•
EPM-2EL-D12.0-W		12	12	22	83	2	В	•
EPM-2EL-D14.0-W		14	14	22	83	2	В	•
EPM-2EL-D16.0-W		16	16	26	92	2	В	•
EPM-2EL-D18.0-W		18	18	26	92	2	В	•
EPM-2EL-D20.0-W		20	20	32	104	2	В	•

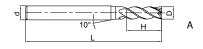
[●] En stock ○ Sur demande

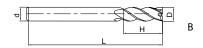
^{*} Avec arrosage interne

Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н
~	~	>			~

✓ Très approprié

Fraise carbure monobloc


Usinage haute performance



- Attachement cylindrique, standard usine ZCC-CT
- Coupe au centre
- Angle d'hélice 45°

			Dimensio	ons [mm]				Nuance
Article	*	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-4E-D3.0		3	6	8	50	4	Α	•
EPM-4E-D4.0		4	6	11	50	4	Α	•
EPM-4E-D5.0		5	6	13	50	4	Α	•
EPM-4E-D6.0		6	6	16	50	4	В	•
EPM-4E-D8.0		8	8	20	60	4	В	•
EPM-4E-D10.0		10	10	25	75	4	В	•
EPM-4E-D12.0		12	12	30	75	4	В	•
EPM-4E-D14.0		14	14	32	75	4	В	•
EPM-4E-D16.0		16	16	45	100	4	В	•
EPM-4E-D18.0		18	18	45	100	4	В	•
EPM-4E-D20.0		20	20	45	100	4	В	•

[•] En stock o Sur demande

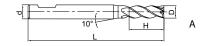
^{*} Avec arrosage interne

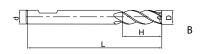
Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н

✓ Très approprié✓ Approprié

Fraise carbure monobloc

Usinage haute performance





- $\ Attachement \ cylindrique, standard \ usine \ ZCC-CT$
- Coupe au centre
- Angle d'hélice 45°

			Dimensio	ons [mm]				Nuance
Article	*	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-4E-D3.0-W		3	6	4	50	4	А	•
EPM-4E-D4.0-W		4	6	5	54	4	Α	•
EPM-4E-D5.0-W		5	6	6	54	4	Α	•
EPM-4E-D6.0-W		6	6	7	54	4	В	•
EPM-4E-D8.0-W		8	8	9	58	4	В	•
EPM-4E-D10.0-W		10	10	11	66	4	В	•
EPM-4E-D12.0-W		12	12	12	73	4	В	•
EPM-4E-D14.0-W		14	14	14	75	4	В	•
EPM-4E-D16.0-W		16	16	16	82	4	В	•
EPM-4E-D18.0-W		18	18	18	84	4	В	•
EPM-4E-D20.0-W		20	20	20	92	4	В	•

[●] En stock ○ Sur demande

^{*} Avec arrosage interne

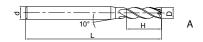
Don	Domaine d'utilisation								
Р	М	K	N	S	Н				
	V	V							

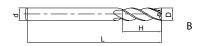
[✓] Très approprié

[✔] Approprié

Fraise à grande longueur taillée

Usinage haute performance





- Attachement cylindrique, standard usine ZCC-CT
- Coupe au centre
- Angle d'hélice 45°

		Dimensions [mm]						Nuance
Article	*	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-4EL-D3.0		3	6	12	75	4	А	•
EPM-4EL-D4.0		4	6	15	75	4	Α	•
EPM-4EL-D5.0		5	6	20	75	4	Α	•
EPM-4EL-D6.0		6	6	20	75	4	В	•
EPM-4EL-D8.0		8	8	25	100	4	В	•
EPM-4EL-D10.0		10	10	30	100	4	В	•
EPM-4EL-D12.0		12	12	35	100	4	В	•
EPM-4EL-D14.0		14	14	40	100	4	В	•
EPM-4EL-D16.0		16	16	50	150	4	В	•
EPM-4EL-D20.0		20	20	55	150	4	В	•

[•] En stock o Sur demande

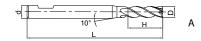
^{*} Avec arrosage interne

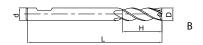
Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н
~	V	>			~

✓ Très approprié

Fraise à grande longueur taillée

Usinage haute performance





- $\ Attachement \ cylindrique, standard \ usine \ ZCC-CT$
- Coupe au centre
- Angle d'hélice 45°

			Dimensio	ons [mm]			Nuance KMG406	
Article	*	D	d (h6)	Н	L	Dents	Géométrie	KMG406
EPM-4EL-D3.0-W		3	6	8	57	4	A	•
EPM-4EL-D4.0-W		4	6	11	57	4	Α	•
EPM-4EL-D5.0-W		5	6	13	57	4	Α	•
EPM-4EL-D6.0-W		6	6	13	57	4	В	•
EPM-4EL-D8.0-W		8	8	19	63	4	В	•
EPM-4EL-D10.0-W		10	10	22	72	4	В	•
EPM-4EL-D12.0-W		12	12	26	83	4	В	•
EPM-4EL-D14.0-W		14	14	26	83	4	В	•
EPM-4EL-D16.0-W		16	16	32	92	4	В	•
EPM-4EL-D18.0-W		18	18	32	92	4	В	•
EPM-4EL-D20.0-W		20	20	38	104	4	В	•

[●] En stock ○ Sur demande

^{*} Avec arrosage interne

Don	naine d	'utilisa	tion		
Р	М	K	N	S	Н
~	V	V			~

[✓] Très approprié

[✔] Approprié

Fraises à queue - Gamme EPM

								Vite	sse de cou	upe v _c [m/	min]			
			Groupe enlèvement de copeaux			Л-2E Л-4E				1-2EL 1-4EL				
				Je co	Rainu	ırage	Fraisage à 90°		Rainurage		Fraisag	je à 90°		
			Dureté	ento	Ø [mm]	a _{p max}	Ø [mm]	a _{e max}	Ø [mm]	a _{p max}	Ø [mm]	a _{e max}		
	Groupe de matériaux	Composition/structure/tr	Brinell HB	vem	0 <x<3< td=""><td></td><td>0<x≤20< td=""><td>0,15 x D</td><td>0<x<3< td=""><td></td><td>0<x≤20< td=""><td>0,15 x D</td><td></td></x≤20<></td></x<3<></td></x≤20<></td></x<3<>		0 <x≤20< td=""><td>0,15 x D</td><td>0<x<3< td=""><td></td><td>0<x≤20< td=""><td>0,15 x D</td><td></td></x≤20<></td></x<3<></td></x≤20<>	0,15 x D	0 <x<3< td=""><td></td><td>0<x≤20< td=""><td>0,15 x D</td><td></td></x≤20<></td></x<3<>		0 <x≤20< td=""><td>0,15 x D</td><td></td></x≤20<>	0,15 x D		
					enlè	3≤x<6	0,3 x D			3≤x<6	0,3 x D		.,	<u> </u>
					nbe	6≤x≤20	0,5 x D			6≤x≤20				<u> </u>
					ē.			1 3406				⊥ G406		
								/ D				/ D		+
						1/1	1/2	1/10	Gr. f	1/1	1/2	1/10	Gr. f	
		env. 0,15 % C	recuit	125	1	165	220	300	1	140	190	255	1	
		env. 0,45 % C	recuit	190	2							-		_
	Acier non allié					160	210	285	1	135	185	245	1	\vdash
	Acier non allie	env. 0,45 % C	trempé et revenu	250	3	120	155	210	1	100	135	180	1	_
		env. 0,75 % C	recuit	270	4	100	135	180	1	85	115	155	1	
_		env. 0,75 % C	trempé et revenu	300	5	95	125	165	1	80	105	145	1	
P			recuit	180	6	125	165	225	1	110	145	195	1	
	Acier faiblement allié		trempé et revenu	275	7	100	135	180	1	85	115	155	1	
			trempé et revenu	300	8	95	125	165	1	80	105	145	1	
			trempé et revenu	350	9	90	115	160	1	75	100	135	1	
	Acier fortement allié et		recuit	200	10	120	155	210	1	100	135	180	1	
	Acier d'outil fortement allié		durci et revenu	325	11	90	120	160	1	75	105	140	1	
		ferritique / martensitique	recuit	200	12	55	75	100	1	45	65	85	1	
		martensitique	trempé et revenu	240	13	50	65	85	1	40	55	75	1	
M	Acier inoxydable	austénitique	trempé	180	14	60	75	105	1	50	65	90	1	
		austénitique et ferritique		230	15	50	65	85	1	40	55	75	1	
		perlitique / ferritique		180	16	125	165	220	1	105	140	190	1	
	Fonte grise	perlitique (martensitique)		260	17	100	135	180	1	85	115	155	1	+
	Fonte avec graphite nodulaire													
K		ferritique		160	18	150	200	270	1	130	175	230	1	-
		perlitique		250	19	120	155	210	1	100	135	180	1	
	Fonte malléable	ferritique		130	20	165	220	300	1	145	190	255	1	
		perlitique		230	21	135	180	240	1	115	155	205	1	
	Alliages corroyé d'aluminium	non durcissable		60	22									
	, , , , , , , , , , , , , , , , , , ,	durcissable	trempé	100	23									
		≤ 12 % Si, non durcissable		75	24									
N	Alliage de fonte d'aluminium	≤ 12 % Si, durcissable	trempé	90	25									
		> 12 % Si, non durcissable		130	26									
		Alliages de décolletage, PB > 1 %	b	110	27									
	Cuivre et alliages de cuivre (Bronze/ moulage)	CuZn, CuSnZn		90	28									
	modage,	CuSn, cuivre et cuivre électrolytic	que sans plomb	100	29									
			recuit	200	30									
		Base Fe	trempé	280	31									
	Alliages réfractaires		recuit	250	32									
S		à base de Ni ou Co	trempé	350	33									
			coulé	320	34									
		Titane pur	Courc	R _m 400	35									
	Alliages de titane	Alliages Alpha + Beta	trempé											
		Alliages Alpha + beta		R _m 1050	36	00	105	1.40			00	120		
	Acier trempé		durci et revenu	55 HRC	37	80	105	140	1	65	90	120	1	
Н			durci et revenu	60 HRC	38	-								-
_	Fonte trempée		coulé	400	39	105	140	185	1	85	120	160	1	
	Fonte durcie		durci et revenu	55 HRC	40									
		Thermoplastique			41									
		Duroplaste			42									
		Matière plastique renforcée de fi	bres de verre GFK		43									
Y	Matériaux non métalliques		1											
X	Matériaux non métalliques	Matière plastique renforcée de fi	bres de carbone CFK		44									
X	Matériaux non métalliques	Matière plastique renforcée de fi Graphite	bres de carbone CFK		44									

Remarques : Les conditions de coupe prescrites sont des valeurs de référence déterminées dans des conditions idéales. Elles doivent être adaptées en fonction de l'application. Les avances recommandées figurent page 22.

								Vite	sse de cou	ipe v _c [m/i	min]												
	EPN	1 20			ED	201																	
	EPIV				EPM EPM																		
					ı												1						
	KMG				KMG																		
	a _e /	i			a _e /						ı		ı	ı	ı		ı	ı	.				
 1/1	1/10	1/20	Gr. f	1/1	1/10	1/20	Gr. f																
	270	300	5		230	255	5																
	260	285	5		220	245	5																
	190	210	5		165	180	5																
	165	180	5		140	155	5																
	150	165	5		130	145	5																
	205	225	5		175	195	5																
	165	180	5		140	155	5																
	150	165	5		130	145	5																
	145	160	5		120	135	5																
	190	210	5		165	180	5																
	145	160	5		125	140	5																
	90	100	5		75	85	5																
	80	85	5		65	75	5																
	95	105	5		80	90	5																
	80	85	5		65	75	5																
	200	220	5		170	190	5																
	165	180	5		140	155	5																
	245	270	5		210	230	5																
	190	210	5		165	180	5																
	270 220	300 240	5		230 185	255 205	5																
	220	240	3		100	203	3																
	125	140	5		110	120	5																
	165	185	1		145	160	1																

Avance recommandée

Fraisage carbure monobloc, groupe 1 – Fraises à 90°, gamme EPM

	a _e /D								Αv	ance pa	r arête d	de coup	e (f _z) [mı	n]					
	a _e /D	Ø0,5	Ø0,8	Ø 1	Ø2	Ø3	Ø 4	Ø 5	Ø6	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 18	Ø 20			
	1/1	0,01	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,05	0,07	0,08	0,08	0,09	0,09	0,10			
P	1/2	0,01	0,03	0,03	0,03	0,03	0,03	0,04	0,04	0,06	0,09	0,10	0,10	0,12	0,12	0,13			
	1/10	0,02	0,05	0,05	0,05	0,05	0,05	0,07	0,07	0,09	0,14	0,16	0,16	0,18	0,18	0,20			
	1/1	0,01	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,04	0,05	0,06	0,06	0,07	0,07	0,08			
M	1/2	0,01	0,02	0,02	0,02	0,02	0,02	0,04	0,04	0,05	0,07	0,08	0,08	0,10	0,10	0,11			
	1/10	0,02	0,04	0,04	0,04	0,04	0,04	0,05	0,05	0,07	0,11	0,13	0,13	0,15	0,15	0,16			
	1/1	0,01	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,05	0,07	0,08	0,08	0,09	0,09	0,10			
K	1/2	0,01	0,03	0,03	0,03	0,03	0,03	0,04	0,04	0,06	0,09	0,10	0,10	0,12	0,12	0,13			
	1/10	0,02	0,05	0,05	0,05	0,05	0,05	0,07	0,07	0,09	0,14	0,16	0,16	0,18	0,18	0,20			
	1/1	0,01	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,04	0,05	0,06	0,06	0,07	0,07	0,08			
Н	1/2	0,01	0,02	0,02	0,02	0,02	0,02	0,04	0,04	0,05	0,07	0,08	0,08	0,10	0,10	0,11			
	1/10	0,02	0,04	0,04	0,04	0,04	0,04	0,05	0,05	0,07	0,11	0,13	0,13	0,15	0,15	0,16			

Remarques : Les conditions de coupe prescrites sont des valeurs de référence déterminées dans des conditions idéales.

Elles doivent être adaptées en fonction de l'application.

Fraisage carbure monobloc, groupe 5 – Fraises hémisphériques, gamme EPM

									Δν	ance na	ır arête d	de comp	o (f) [mi	ml			-		
	a _e /D	Ø0,5	Ø0,8	Ø 1	Ø2	Ø3	Ø 4	Ø5	Ø 6	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 18	Ø 20			
	1/1																		
Р	1/10	0,02	0,05	0,05	0,05	0,05	0,05	0,07	0,07	0,09	0,14	0,16	0,16	0,18	0,18	0,20			
	1/20	0,03	0,06	0,06	0,06	0,06	0,06	0,08	0,08	0,11	0,17	0,20	0,20	0,23	0,23	0,25			
	1/1																		
M	1/10	0,02	0,04	0,04	0,04	0,04	0,04	0,05	0,05	0,07	0,11	0,13	0,13	0,15	0,15	0,16			
	1/20	0,02	0,05	0,05	0,05	0,05	0,05	0,07	0,07	0,09	0,14	0,16	0,16	0,18	0,18	0,21			
	1/1																		
K	1/10	0,02	0,05	0,05	0,05	0,05	0,05	0,07	0,07	0,09	0,14	0,16	0,16	0,18	0,18	0,20			
	1/20	0,03	0,06	0,06	0,06	0,06	0,06	0,08	0,08	0,11	0,17	0,20	0,20	0,23	0,23	0,25			
	1/1																		
Н	1/10	0,02	0,04	0,04	0,04	0,04	0,04	0,05	0,05	0,07	0,11	0,13	0,13	0,15	0,15	0,16			
	1/20	0,02	0,05	0,05	0,05	0,05	0,05	0,07	0,07	0,09	0,14	0,16	0,16	0,18	0,18	0,21			

Remarques: Les conditions de coupe prescrites sont des valeurs de référence déterminées dans des conditions idéales. Elles doivent être adaptées en fonction de l'application.

Série EPM Fraises carbure monobloc

Notes

Siège europénne

ZCC Cutting Tools Europe GmbH

www.zccct-europe.com

Wanheimer Str. 57, 40472 Düsseldorf, Germany

Tel.: +49 (0) 211-989240-0 Fax: +49 (0) 211-989240-111 E-Mail: info@zccct-europe.com Succursale Française

ZCC Cutting Tools Europe GmbH Succursale Française

www.zccct-europe.com

14, Allée Charles Pathé, 18000 Bourges, France

Tel.: +33 (0) 2 45 41 01 40 Fax: +33 (0) 800 74 27 27 E-Mail: ventes@zccct-europe.com

© Copyright by ZCC Cutting Tools Europe GmbH Tous droits réservés.

Tous droits réservés. Toutes les descriptions et photos sont protégées par un copyright. L'utilisation, la modification, et la reproduction, complète ou partielle, sans permission écrite, est interdite. Sujet à changement technique, et changement du programme de livraison. Des erreurs sont possibles.